

Motoplus-ROS Incremental
Motion interface

Engineering Design
Specifications

DOCUMENT NO: M2092-EDS

DOCUMENT VER.: 1.2.0

DATE: 04/07/2017

Distribution is subject to copyright.

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 ii

Disclaimers

The information contained in this document is the proprietary and exclusive property of
Yaskawa Motoman Robotics except as otherwise indicated. No part of this document, in
whole or in part, may be reproduced, stored, transmitted, or used for design purposes
without the prior written permission of Yaskawa Motoman Robotics.

The information contained in this document is subject to change without notice.

The information in this document is provided for informational purposes only. Yaskawa
Motoman Robotics specifically disclaims all warranties, express or limited, including, but not
limited, to the implied warranties of merchantability and fitness for a particular purpose,
except as provided for in a separate software license agreement.

Privacy Information

This document may contain information of a sensitive nature. This information should not be

given to persons other than those who are involved in the ROS project or who will become

involved during the lifecycle

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 iii

History

 Revisions and Reviews

Version Person(s) Description Date

1.0.0 Tom Moolayil
and Eric Marcil

Original version 11/01/2012

1.1.0 Eric Marcil Revised version
Target FS100 controller and rewrite the
MotoPlus application in C.

03/14/2013

PDR Eric Marcil, Ted Miller, Greg Morgan,
Takeomi Hidata

3/18/2013

Review Review with SwRI: Jeremy Zoss 3/19/2013

1.1.1 Eric Marcil Integrated comments from the PDR and
Review from SwRI.
Main changes: redefinition of simple
message and extra information on
Motion_ready state

3/20/2013

1.1.2 Eric Marcil Review section 2.7 Interpolation to reflect
changes made to improve performance.

4/5/2013

1.1.3 Eric Marcil Add RobotState message
Change to architecture to check incoming
joint trajectory data.

5/15/2013

1.1.4 Eric Marcil Added I/O feedback signal in section 4.2
Added detail about DX100 version

8/14/2013

1.2.0 Eric Marcil Updated document with new messages that
have been added in the recent years.
Section 2.4.6 to 2.4.11

4/7/2017

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 iv

Document Approval

Motoman:

Yaskawa America, Inc.
Motoman Robotics Division
100 Automation Way
Miamisburg, OH 45342
937-847-6200

Customer:

Company Name
Address
City, State, Zip
Phone

Approvals:

Name Title Organization/Dept.

1

2

3

4

5

6

Signature Date

1

2

3

4

5

6

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 v

Table of Contents

1 Overview ... 1

1.1 Current System Issues ... Error! Bookmark not defined.

1.2 Scope .. Error! Bookmark not defined.

1.3 Objectives .. 1

2 Specifications ... 2

2.1 Architecture .. 2

2.1.1 ROS to MotoROS ... 3

2.1.2 MotoROS to ROS ... 3

2.1.3 INFORM to Motoplus.. 3

2.2 Communication Sequence and Tasks ... 4

2.2.1 Main Task ... 4

2.2.2 Connection Server Task ... 5

2.2.3 State Server Task ... 6

2.2.4 Motion Server Task .. 7

2.2.5 Add to Inc Move Queue Task ... 8

2.2.6 Inc Motion Task .. 9

2.3 Data Structures .. 10

2.3.1 Controller Structure .. 10

2.3.2 Control Group ... 10

2.3.3 Incremental Motion Queue ... 10

2.4 Simple Messages .. 11

2.4.1 Message type 13: ROBOT_STATUS ... 12

2.4.2 Message type 14: JOINT_TRAJ_PT_FULL ... 13

2.4.3 Message type 15: JOINT_FEEDBACK .. 14

2.4.4 Message type 2001: MOTO_MOTION_CTRL ... 15

2.4.5 Message type 2002: MOTO_MOTION_REPLY .. 16

2.5 Motion Ready State ... 18

2.6 MotoROS to Controller communication ... 21

2.7 Interpolation of Pulse Increment .. 22

2.7.1 Algorithm .. 22

2.7.2 Calculation .. 23

2.7.3 Check for incremental move validity .. 24

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 vi

3 Conclusion ... 25

3.1 Future development ... 25

4 Appendix .. 26

4.1 Port Numbers ... 26

4.2 IO Feedback .. 26

4.3 Result codes .. 26

4.4 Result subcodes .. 27

Index of Figures

Figure 1: System Architecture .. 2

Figure 2: Main Task Start-up .. 4

Figure 3: Connection Server Task .. 5

Figure 4: State Server Task .. 6

Figure 5: Motion Server Task.. 7

Figure 6: Add to Increment Move Queue Task... 8

Figure 7: IncMotionTask ... 9

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 1

1 Overview

The ROS-Industrial program, initiated by Southwest Research Institute (SwRI), enables new
applications and reduces project costs for industrial robotics. ROS-Industrial leverages the
advanced capabilities of the Robot Operating System (ROS) software for powerful new
industrial applications. This platform is usually used to calculate possible robot IK solutions
by creating a virtual world identical to that of the real robot and using the obstacle/work
space information to plan an optimal path to perform a task.

The ROS industrial calculates a path and streams the way points using “Simple Message” to
the MotoRos driver running in the Yaskawa controller (DX100 or later). The MotoRos driver
interpolates between the way points to generate motion increments matching the controller
motion interpolation clock and moves the robot through the waypoints.

1.1 Objectives

The overall objectives of this project are:

1. To enable the robot to execute externally generated trajectories at full speed and

smoothing as is appropriate during the course of executing any trajectory.

2. To create a Motoplus application that used the mpExRcsIncrementMove function.

3. To define the communication interface of ROS to incorporate required data to define a

trajectory and necessary function to operate the robot.

4. To implement restrictions on the incoming data from the PC to enforce safety and pre-

vent damage to the robot.

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 2

2 Specifications

2.1 Architecture

Figure 1: System Architecture

PC (Linux)

FS100 Controller

ROS

Define a path for the robot:

ROS Industrial

Decompose path into smaller control points
with joint positions, time and end flag:

T0

T1

T2 T3

T4 T5

T6

MotoPlus (MotoROS)

- Initialize MotoROS by retrieving the controller/manipulator data
- Enable the incremental move function by calling job with SKILLSND
command or a triggering I/O signal.
- Run task receiving the ROS industrial
motion and breaks it down to controller
interpolation clock.
- Run task synchronized with the controller interpolation clock that sends
the incremental motion instruction (mpExRcsIncrementMove)

Controller Software

Execute job to enable the incremental move function.
Move the robot according the received incremental move.

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 3

2.1.1 ROS to MotoROS
ROS-Industrial is responsible for generating the way-points and sending them to the robot
controller. ROS will internally generate the way points and velocity information and send it
via TCP/IP to a MotoPlus application, MotoROS, running on the controller to interpret and
use them as it sees fit.

2.1.2 MotoROS to ROS
Once MotoROS receives a point, it will send a reply to the ROS side to let it know it has
received the way point and it is ready to receive subsequent points.

2.1.3 INFORM to Motoplus
There will be an inform job which has to be running in order for Motoplus to move the robot.

It doesn’t need to have any motion commands. The mpExRcsIncrementMove command only

works while the cursor is on a WAIT command. The INFORM job will look as follows:

NOP

‘reset the I/O signals

DOUT OT#(890) OFF

DOUT OT#(889) OFF

TIMER T=0.05

‘

‘signal ROS that the controller

‘is ready to receive motion

DOUT OT#(889) ON

‘

‘wait for the signal that ROS is done

WAIT OT#(890)=ON

‘

‘turn off the controller ready signal

DOUT OT#(890) OFF

END

For the final product release, this code will probably be encapsulated in the macro function to
facilitate the usage.

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 4

2.2 Communication Sequence and Tasks

2.2.1 Main Task

The main task is the initial task at start-up. Figure 2 shows the main task operation and
interaction with the controller. It will create an instance of the controller structure which
contains all the data (controller data, control group, queue…) of the MotoPlus application. It
starts the Connection Server task and then enter in an endless loop that will monitor the
controller status (alarm, error, servos, play…) and take required actions when the state of the
controller changes. For example monitor conditions to detect when the controller is ready to
receive motion from ROS.

MotoROS:
Main Task Controller

Retrieve
Controller Data
(Manipulator
parameter)

Power Up
Controller

Start MotoPlus
Application

Initialize
MotoROS

All.prm file

Start Tasks

MotoROS:
Connection

Server

Retrieve
controller

status

I/O Status

Update local
status and if

required, take
action on
change

Controller Data

Figure 2: Main Task Start-up

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 5

2.2.2 Connection Server Task

ROS
ROS

Industrial

Start ROS

Load Nodes
Start ROS
Industrial

Connect to
controller

MotoROS:
Connection

Server

MotoROS: Start
StateServer

SendState task

Wait for
connection by
checking the
various port

Initialize
connection

ports

Connection
State Server

Port?

Connection
Motion Server

Port?

MotoROS: Start
MotionServer

WaitForSimpleMsg
task

MotoROS: Start
AddToIncQueue task

MotoROS: Start
IncMoveLoop

task

Yes

Yes

Future Server
Port?

Yes

Future
Task

Figure 3: Connection Server Task

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 6

The connection server task (figure 3) opens connections on various ports (state, motion…)
and then waits for a client to connect on one of the port. When a connection is detected on a
port, a corresponding new task is started to handle communication to the connected client.
The architecture is such that multiple clients can connect on a same server. They are
however a maximum number of allowable connections and the connection request will be
denied if all connections are already in use. Initially the supported ports and corresponding
server tasks are the State and the Motion servers but this could be expended to other type of
service server in the future. It is important to be mindful of the number of the overall tasks in
the system.

2.2.3 State Server Task

The state server task (figure 4) retrieves the controller state (robot position) and sends it to
the clients connected to the state server port. It doesn’t wait on any request from the client,
the moment the connection is established it will automatically start sending the information at
regular interval. Thus there may be multiple clients listening, there will be a single instance
of the state server task.

ROS
ROS

Industrial

MotoROS:
StateServer Controller

Get Robot
Position

Robot
Feedback
Position

Send Position to
ROS

Receive
State Data

(Robot
Position,
Status)

Display/
Update

Robot State

Send locally
stored status to

ROS.
(Status retrieved

by Main task)

Store Current
Position in

Shared Variable

Controller Data

Figure 4: State Server Task

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 7

2.2.4 Motion Server Task

A new motion server task is started for each connection to the motion server port. But
multiple connections should never attempt to control the same control group. So in the initial
implementation which will focus on a single robot, only one connection should be allowed.
When multiple robots are to be controlled, if the motion message sent contains the motion for
all control groups, then there should also be only one connection allowed. But if each control
group is controlled by its own node sending messages only for that group, then a connection
for each group should be allowed.

Process motion
message

Take
appropriate

action...
Inc. Move

Queue

ROS
Industrial

MotoROS:
MotionServer

Wait for motion
message

Wait motion
message reply

Send reply

Send motion
message

Message
contains

trajectory
point?

Parse and
validate

trajectory data

Controller

Trajectory
point data

copy

No

Yes

Figure 5: Motion Server Task

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 8

The motion server task (figure 5) will wait for motion message from the client. When
receiving a message it will identify the message type and purpose, then take action
accordingly before replying back to the client with the result of the processing (success,
failure…) in the MOTION_REPLY message.

In the case of motion message that adds a trajectory point used to generate incremental
motion in the queue, if the queue is full the reply could be delayed. This is undesirable
because it would prevent other message such as stop motion to come in. So in order to
prevent this situation, the message is parsed and its data validated, the point data is then
temporarily copied to be processed by the AddToIncQueueProcess background task. So a
success reply on such instruction only indicates that the message was accepted and not that
the motion was completely processed into incremental moves. If the background task is
already processing a point, a busy reply will be return to the client and the client will have to
resend the message again.

2.2.5 Add to Inc Move Queue Task

The AddToIncQueueProcess task (figure 6) is a background tasks that take a motion
message’s trajectory data and breaks it down to incremental motion segments that matches
the controller interpolation period. In the case of multiple motion server connections, you
would have one AddToIncMoveQueue task for each motion server task.

MotoROS:
AddToIncQueue

Process
trajectory point

and generate
next

corresponding
IncMove

Add
Inc Move to

queue

Is there a
point to
process?

Yes

No

Inc. Move
Queue

Trajectory
point data

copy

Is the
Inc.Queue

full?

Yes

No

No Is trajectory
point

reached?

 Yes

Figure 6: Add to Increment Move Queue Task

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 9

2.2.6 Inc Motion Task

The incremental motion task (figure 7) synchronizes with the controller internal clock and
transfers the incremental move for one motion interpolation period to the controller with the
mpExRcsIncrementMove. This is what regulates the motion to obtain the proper motion
speed. Regardless of the number of motion server tasks there should only be one instance
of the incremental motion task.

MotoROS:
IncMoveLoop

Take Next
Inc.Move from

Queue

Apply the inc.
move to the

next
interpolation

segment

Wait for next
interpolation

clock
announcement

Send
Inc Move

Controller

Interpolation
clock

announcement

Inc. Move
Queue

Are there
moves in
queue?

Yes

No

Validate Inc
Move values

Figure 7: IncMotionTask

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 10

2.3 Data Structures

2.3.1 Controller Structure

The controller structure is the main data structure that contains all the data of the MotoROS
application. It is instantiated and initialized with the controller data at the start of the
MotoROS application. It holds the controller specific information such as the interpolation
period, the number of control groups, pointers to the various tasks and so on. The pointer to
this structure is normal passed as a parameter to most functions.

In the initialization phase, the controller data is populated by calling functions from the
ParameterExtraction library.

2.3.2 Control Group

One of the main substructures to the controller is the control group structure (ctrlGroup)
which contains the data for a specific control group. A control group is a logical grouping of
multiple axes that represent a mechanism such as a robot, a base or a station. For example,
in the case of a single arm robot there should be only one group R1; but for a dual arm robot
you would have R1, R2, B1, B2 (which is physically the same as B1).

Each control group will hold the data specific to its axes: the number of axes, the pulse
ratios, speed limits… It will also have its own incremental motion queue, so that one group
can be move independently from other groups.

2.3.3 Incremental Motion Queue

The incremental motion queue is a circular queue of a fixed size that is constantly reused. It
allows taking a trajectory that is define by a few points and sent to the MotoRos at a slower
rate and break it down so smaller increments corresponding to the interpolation period. The
incremental motion queue holds those smaller increments that can be sent to the controller
through the mpExRcsIncrementMove function at the interpolation rates.

The incremental queue also includes the variables to control its access form multiple threads
and keeps track of its usages (index, data count).

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 11

2.4 Simple Messages

ROS Industrial uses simple message structure to communicate between the ROS and the
MotoROS application running on the controller. Note that the FS100 uses the Big Endian
convention when parsing network communication and that the corresponding ROS
communication library needs to be use.

The simple message is composed of prefix which contains the length of the message
(header + data), a header containing the message type, com type and reply and then the
data which may vary depending on the message type.

Prefix contains the following information:

- Length: signed 32 bit integer (4 bytes);

Header contains the following information:

- MessageType: signed 32 bit integer (4 bytes);

- CommType: signed 32 bit integer (4 bytes);

- ReplyType: signed 32 bit integer (4 bytes);

ROS Industrial already has defined some basic message type, but we find that some of
those messages lack data to work properly with Motoman controller. Motoman specific
message in the 2000 range were added but we’ve tried to follow the standard message
model as much as possible.

Note that angular values are normally in radians. The ROS maximum number of axes is
normally 10 axes but the Motoman maximum axes for a group is 8. ROS axes are define in
the sequential order of the joint, whereas Motoman axes order for 7-axes robots places the
7th axis (E) value at index 2 between the 2nd (L) and 3rd (U) joints.

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 12

2.4.1 Message type 13: ROBOT_STATUS

The message called ROBOT_STATUS type which reflects the state of the robot/controller is
designated as type 13.

Its data contains the following information:

Type Name Description

Int32 Drives_powered Servo power

-1 = Unknown; 1 = ON; 0 = OFF

Int32 E-stopped Controller E-Stop state

-1 = Unknown; 1 = TRUE(ON); 0 =
FALSE(OFF)

Int32 Error_code Alarm code of the first current alarm

-1 = Unknown; 0 = No alarm; Other = Alarm#

Int32 In_error There is at least one active alarm

-1 = Unknown; 1 = TRUE(ON); 0 =
FALSE(OFF)

Int32 In_motion The controller is executing a job (program)

-1 = Unknown; 1 = TRUE(ON); 0 =
FALSE(OFF)

Int32 Mode Controller/Pendant mode

-1 = Unknown; 1 = Manual(Teach);

0 = Auto (Play or Remote)

Int32 Motion_possible Controller can receive motion for ROS

-1 = Unknown; 1 = Enabled; 0 = Disabled

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 13

2.4.2 Message type 14: JOINT_TRAJ_PT_FULL

The message called JOINT_TRAJ_PT_FULL type which includes position, velocity,
acceleration and time is designated as type 14. This type of message contains sufficient
trajectory data to accurately reproduce the trajectory generated by ROS with matching speed
profile.

Its data contains the following information:

Type Name Description

Int32 Robot_id Robot/group ID

0 = 1st robot

Int32 Sequence Index of point in trajectory

0 = Initial trajectory point, which should match
the robot current position.

Int32 Valid_fields Bit-mask indicating which “optional” fields are filled
with data.

1 = time, 2 = position, 4 = velocity, 8 =
acceleration

MotoROS expects all values, so this value
should be set to 7.

Real32 Time Timestamp associated with this trajectory point

Units: in seconds

Real32 Positions[10] Desired joint positions in radian.

Ordering matches the sequential joint order:
SLURBT for 6 axis robot and SLEURBT for 7
axis robots.

Real32 Velocities[10] Desired joint velocities in radian/sec.

Ordering matches the sequential joint order:
SLURBT for 6 axis robot and SLEURBT for 7 axis
robots.

Real32 Accelerations[10] Desired joint accelerations in radian/sec2.

Ordering matches the sequential joint order:
SLURBT for 6 axis robot and SLEURBT for 7 axis
robots.

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 14

2.4.3 Message type 15: JOINT_FEEDBACK

The message called JOINT_FEEDBACK type which includes position, velocity, acceleration
and time is designated as type 15. At this time only the position field will be valid.

Its data contains the following information:

Type Name Description

Int32 Robot_id Robot/group ID

0 = 1st robot

Int32 Valid_fields Bit-mask indicating which “optional” fields are filled
with data.

1 = time, 2 = position, 4 = velocity, 8 =
acceleration

MotoROS only send the position, so this value
should be set to 2.

Real32 Time Timestamp associated with this trajectory point

Units: in seconds

Real32 Positions[10] Desired joint positions in radian.

Ordering matches the sequential joint order:
SLURBT for 6 axis robot and SLEURBT for 7
axis robots.

Real32 Velocities[10] Desired joint velocities in radian/sec.

Ordering matches the sequential joint order:
SLURBT for 6 axis robot and SLEURBT for 7 axis
robots.

Real32 Accelerations[10] Desired joint accelerations in radian/sec2.

Ordering matches the sequential joint order:
SLURBT for 6 axis robot and SLEURBT for 7 axis
robots.

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 15

2.4.4 Message type 2001: MOTO_MOTION_CTRL

The message called MOTO_MOTION_CTRL is designated as type 2001. This message is
used to send motion commands to control and manage the overall motion.

Its data contains the following information:

Type Name Description

Int32 Robot_id Robot/group ID

0 = 1st robot

Int32 Sequence Optional message tracking number that will be
echoed back in the respond.

Int32 Command Desired command:

200101 = CHECK_MOTION_READY

200102 = CHECK_QUEUE_CNT

200111 = STOP_MOTION

200121 = START_TRAJ_MODE

200122 = STOP_TRAJ_MODE

Real32 Data[10] Reserved for future command use.

Command details:

CHECK_MOTION_READY (200101): Checks if the MotoROS/Controller side is
ready to receive external motion data from ROS.

CHECK_QUEUE_CNT(200102): Return the number of motion increment
currently in the queue. A return of 0 indicates that the queue is empty and all
previous motion has been sent to the controller.

STOP_MOTION (200111): Stops robot motion immediately. Note after a stop,
the current trajectory will be cleared and a new trajectory will need to be initiated
but it doesn’t necessarily turn off the MOTION_READY state.

START_TRAJ_MODE (200121): Signals MotoROS to set the controller in
trajectory receiving mode so that ROS can start sending trajectory points.

STOP_TRAJ_MODE (200122): Signals the MotoROS hands controller back to
the controller’s INFORM job. Note that motion needs to complete or stopped
before sending this command.

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 16

2.4.5 Message type 2002: MOTO_MOTION_REPLY

MotoROS sends this reply message each time it receives a joint trajectory message or a
motoman motion control command.

Its data contains the following information:

Type Name Description

Int32 Robot_id Robot/group ID

0 = 1st robot

Int32 Sequence Reference to the sequence number that is being
responded to.

Int32 Command Reference to the command or message type that is
being responded to.

14 = JOINT_TRAJ_PT_FULL

200101 = CHECK_MOTION_READY

200102 = CHECK_QUEUE_CNT

200111 = STOP_MOTION

200121 = START_TRAJ_MODE

200122 = STOP_TRAJ_MODE

Int32 Result High level command result code:

0=SUCCESS/TRUE; 1=BUSY;
2=FAILURE/FALSE; 3=INVALID; 4= ALARM;
5=NOT_READY; 6=MP_FAILURE

Int32 Subcode More detailed result code (optional)

Real32 Data[10] Reserved for future command use.

Result details:

SUCCESS/TRUE (0): The message was processed successfully or the state is true.

BUSY (1): The message couldn’t be processed at this time. Resend the message.

FAILURE/FALSE (2): The message couldn’t be processed properly or the state is false.

INVALID (3): The message type is invalid or the data is incorrect.

ALARM (4): An alarm is currently active on the controller.

NOT_READY (5): The controller is not in ready for motion.

MP_FAILURE (6): MotoPlus API failure. Subcode=MotoPlus Error Code

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 17

2.4.6 Message type 2003: MOTO_ READ_SINGLE_IO

The message called MOTO_READ_SINGLE_IO is designated as type 2003. This message
is used to read the current state of a specific I/O point of the controller.

Its data contains the following information:

Type Name Description

Int32 ioAddress Address of the controller I/O signal to be read.

Values from 00010 to 1000559, please refer to the
controller Concurrent I/O Manual for details on
addresses.

2.4.7 Message type 2004: MOTO_READ_SINGLE_IO_REPLY

MotoROS sends this reply message each time it receives a MOTO_READ_SINGLE_IO
message.

Its data contains the following information:

Type Name Description

Int32 value State of the I/O:

0 = OFF

1 = ON

Int32 resultCode High level command result code:

1 = SUCCESS

2 = FAILURE

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 18

2.4.8 Message type 2005: MOTO_ WRITE_SINGLE_IO

The message called MOTO_ WRITE _SINGLE_IO is designated as type 2005. This
message is used to read the current state of a specific I/O point of the controller.

Its data contains the following information:

Type Name Description

Int32 ioAddress Address of the controller I/O signal to be written.

Values from 10010 to 1000559; Note that some
addresses are read only. Please refer to the
controller Concurrent I/O Manual for details on
addresses.

Int32 value State of the I/O:

0 = OFF

1 = ON

2.4.9 Message type 2006: MOTO_READ_SINGLE_IO_REPLY

MotoROS sends this reply message each time it receives a MOTO_ WRITE _SINGLE_IO
message.

Its data contains the following information:

Type Name Description

Int32 resultCode High level command result code:

1 = SUCCESS

2 = FAILURE

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 19

2.4.10 Message type 2016: MOTO_ JOINT_TRAJ_PT_FULL_EX

The message called MOTO_JOINT_TRAJ_PT_FULL_EX type is designated as type 2016.
It includes position, velocity, acceleration and time for multiple control groups. This type of
message contains sufficient trajectory data to accurately reproduce the trajectory generated
by ROS with matching speed profile.

Its data contains the following information:

Type Name Description

Int32 numberOfValidGroups Indicates the amount data contained in the array
that is valid. This normally correspond to the
number of control group defined on the controller.

Int32 sequence Index of point in trajectory

0 = Initial trajectory point, which should match the
robot current position.

Array jointTrajPtData Array of JointTrajPtExData structure containing data
for each control group motion.

Array length= 4

JointTrajPtExData structure:

Type Name Description

Int32 Robot_id Robot/group ID

0 = 1st robot

Int32 Valid_fields Bit-mask indicating which “optional” fields are filled
with data.

1 = time, 2 = position, 4 = velocity, 8 =
acceleration

MotoROS expects all values, so this value should
be set to 7.

Real32 Time Timestamp associated with this trajectory point

Units: in seconds

Real32 Positions[10] Desired joint positions in radian.

Ordering matches the sequential joint order:
SLURBT for 6 axis robot and SLEURBT for 7
axis robots.

Real32 Velocities[10] Desired joint velocities in radian/sec.

Ordering matches the sequential joint order: SLURBT
for 6 axis robot and SLEURBT for 7 axis robots.

Real32 Accelerations[10] Desired joint accelerations in radian/sec2.

Ordering matches the sequential joint order: SLURBT
for 6 axis robot and SLEURBT for 7 axis robots.

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 20

2.4.11 Message type 2017: MOTO_ JOINT_FEEDBACK_EX

The message called MOTO_JOINT_FEEDBACK_EX type is designated as type 2017. It
includes position, velocity, acceleration and time for multiple control groups. At this time only
the position field will be valid.

Its data contains the following information:

Type Name Description

Int32 numberOfValidGroups Indicates the amount data contained in the array
that is valid. This normally correspond to the
number of control group defined on the controller.

Array jointTrajPtData Array of JointFeedback structure containing data for
each control group position.

Array length= 4

JointFeedback structure is the same as the one used for the JOINT_FEEDBACK message.
Please refer to section 2.4.3.

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 21

2.5 Motion Ready State

In order for the controller to accept external incremental motion, it must be in the
MOTION_READY state. This state indicates that the controller is ready to receive trajectory
from ROS. In order to be ready for motion, the following condition must be met:

 Operating: Job is playing back (PLAY mode + START or TEACH mode and
INTERLOCK + TEST START)

 WAIT instruction: Job is executing a WAIT instruction. There is no explicit way of
checking for the WAIT instruction other than actually sending
mpExRcsIncrementMove and checking the return value for error.

 Handshaking I/O signal is ON: Since it is difficult to detect the execution of the
WAIT instruction, an I/O signal is set just before the WAIT instruction to signal that
the WAIT instruction has been reached.

 REMOTE: System is in REMOTE. The mpExRcsIncrementMove doesn’t actually
require the controller to be in REMOTE but other MotoPlus functions use to manage
the system may require it and also for safety purpose, this condition is added.

The MOTION_READY state can be checked by sending a MOTO_MOTION_CTRL message
with the command 1: CHECK_MOTION _READY.

Most perturbation of the system will cause the MOTION_READY state to turn off. Such
perturbation include: Alarm, Error, E-stop, switching between REMOTE, PLAY and TEACH
mode, Servo Off.

When the MOTION_READY state drops:

 Any further joint trajectory point messages are refused and the NOT_READY
response code will be sent back.

 The incremental queue is cleared and no further increment will be sent to the
controller.

To restart, the MOTION_READY state will need to be reestablish and a new trajectory will
need to be generated by ROS using the current position of the robot as a start position.

If the system is not in the MOTION_READY state, sending a MOTO_MOTION_CTRL
message with the command 200121: START_TRAJ_MODE command will initiate the
following sequence to attempt to put the controller in the proper state:

 Reset alarm or errors

 Servo on

 Select the job :INIT_ROS (job containing sequence from section 2.1.3 or equivalent)

 Start the job execution

2.6 MotoROS to Controller communication

MotoROS exchanges data with the controller using the MotoPlus API. Please refer to the
MotoPlus FS100 Language Reference manual and the mpExRcsIncrementMove document
for details.

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 22

2.7 Interpolation of Pulse Increment

The MotoROS will receive trajectory points from the ROS Industrial. The trajectory points
will include sequence number, time stamp, position (absolute) and velocity for each joint
using angular radians units. The points maybe spread along a path at different spacing or
time interval. The MotoROS application will need to interpolate the path between those
points and determine the corresponding incremental move to send to the controller at the
controller set interpolation period. The acceleration is modeled as a linear equation that will
be resolved using the position, velocity and time data. The following are the calculation to be
implemented for this interpolation.

2.7.1 Algorithm

For each new trajectory point:

Calculate acceleration equation coefficients.

While time is smaller than new ROS point time

Increment calculation time by next interpolation period

If next interpolation period is smaller than the controller interpolation period, make it
equal.

If calculation time is smaller than new ROS point time

Set new time to calculation time

For each axis

Calculate position for the current calculation time

Calculate velocity for the current calculation time

Else (if calculation time is equal or larger than new ROS point time)

If calculation time is larger than new ROS point time

Set the next interpolation increment to the different between the two

Set the calculation time equal to the new ROS point time

For each axis

Set position to new ROS point position

Set velocity to new ROS point velocity

Convert new position in pulses

Calculate new pulse increment by subtracting previous pulse position from new pulse
position.

Check incremental pulse validity

Add new pulse increment to queue

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 23

2.7.2 Calculation

This section covers the calculation made to interpolate points between two ROS control
point. The known data is the position (xi and xi+1) and velocity (vi and vi+1) at the control
points at the time ti and ti+1 (received in the trajectory message from ROS).

The acceleration is modeled as a linear equation:

𝑎 = 𝑎1 + 𝑎2 𝑡

The velocity at any given time is then determined by the equation:

 𝑣 = 𝑣𝑖 + ∫ 𝑎 𝑑𝑡
𝑡

𝑡𝑖
= 𝑣𝑖 + ∫ (𝑎1 + 𝑎2 𝑡) 𝑑𝑡

𝑡

𝑡𝑖

 𝒗 = 𝒗𝒊 + 𝒂𝟏(𝒕 − 𝒕𝒊) +
 𝒂𝟐 (𝒕−𝒕𝒊)𝟐

𝟐

And the position by the equation:

 𝑥 = 𝑥𝑖 + ∫ 𝑣 𝑑𝑡
𝑡

𝑡𝑖
= 𝑥𝑖 + ∫ (𝑣𝑖 + 𝑎1𝑡 +

 𝑎2 𝑡2

2
) 𝑑𝑡

𝑡

𝑡𝑖

 𝒙 = 𝒙𝒊 + 𝒗𝒊(𝒕 − 𝒕𝒊) + 𝒂𝟏
(𝒕−𝒕𝒊)𝟐

𝟐
 +

 𝒂𝟐 (𝒕−𝒕𝒊)𝟑

𝟔

Using the control point data to resolve the equations, we find at time ti that:

 𝑣𝑖+1 = 𝑣𝑖 + 𝑎1(𝑡𝑖+1 − 𝑡𝑖) +
 𝑎2 (𝑡𝑖+1−𝑡𝑖)2

2

And

 𝑥𝑖+1 = 𝑥𝑖 + 𝑣𝑖(𝑡𝑖+1 − 𝑡𝑖) + 𝑎1
(𝑡𝑖+1−𝑡𝑖)2

2
 +

 𝑎2 (𝑡𝑖+1−𝑡𝑖)3

6

time

position

ti ti+1

xi

xi+1

vi+1 vi

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 24

Using the two equations above, we can resolve the acceleration coefficients a1 and a2:

 𝑎1 =
(𝑣𝑖+1−𝑣𝑖)

(𝑡𝑖+1−𝑡𝑖)
−

𝑎2(𝑡𝑖+1−𝑡𝑖)

2

 𝑥𝑖+1 = 𝑥𝑖 + 𝑣𝑖(𝑡𝑖+1 − 𝑡𝑖) + (
(𝑣𝑖+1−𝑣𝑖)

(𝑡𝑖+1−𝑡𝑖)
−

𝑎2(𝑡𝑖+1−𝑡𝑖)

2
)

(𝑡𝑖+1−𝑡𝑖)2

2
 +

 𝑎2 (𝑡𝑖+1−𝑡𝑖)3

6

 (𝑥𝑖+1 − 𝑥𝑖) =
(𝑣𝑖+1+𝑣𝑖)(𝑡𝑖+1−𝑡𝑖)

2
 −

𝑎2(𝑡𝑖+1−𝑡𝑖)3

12

𝑎2(𝑡𝑖+1−𝑡𝑖)3

12
= −(𝑥𝑖+1 − 𝑥𝑖) +

(𝑣𝑖+1+𝑣𝑖)(𝑡𝑖+1−𝑡𝑖)

2

 𝒂𝟐 =
−𝟏𝟐(𝒙𝒊+𝟏−𝒙𝒊)

(𝒕𝒊+𝟏−𝒕𝒊)𝟑
+

𝟔(𝒗𝒊+𝟏+𝒗𝒊)

(𝒕𝒊+𝟏−𝒕𝒊)𝟐

 𝑎1 =
(𝑣𝑖+1−𝑣𝑖)

(𝑡𝑖+1−𝑡𝑖)
− (

12(𝑥𝑖−𝑥𝑖+1)

(𝑡𝑖+1−𝑡𝑖)3 +
6(𝑣𝑖+1+𝑣𝑖)

(𝑡𝑖+1−𝑡𝑖)2)
(𝑡𝑖+1−𝑡𝑖)

2

 𝒂𝟏 =
𝟔(𝒙𝒊+𝟏−𝒙𝒊)

(𝒕𝒊+𝟏−𝒕𝒊)𝟐 −
𝟐(𝒗𝒊+𝟏+𝟐𝒗𝒊)

(𝒕𝒊+𝟏−𝒕𝒊)

With those coefficients, the position and velocity for any time between ti and ti+1 can be
determined.

2.7.3 Check for incremental move validity

Check should be made to insure that any extreme value sent via ROS doesn’t cause
damage to the manipulator.

Initial test indicates that the controller already does checking for excessive segment and soft
limits. Further testing should be done to determine what other validate might be required or
not.

Check that might be required would be:

Acceleration:

If abs(newIncPulse[i] - prevIncPulse[i]) > MaxAccelPulse[i] generate error

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 25

3 Conclusion

The current design will give a good base for controlling robot motion through the ROS
Industrial. It attempts to make an architecture that will allow expending functionality in the
future. There are a few things that have not been fully detailed and will need to be refined as
ROS industrial grows. Below are some suggestion of future developments and
improvements.

3.1 Future development

In the case of multiple control group motion, it will have to be determined if the data for
multiple robots/groups is pass together in one message to one motion server; or separately
for each robot/group to separate motion server. Depending on the approach, better
synchronization between motion groups may need to considered and elaborated further.

Currently the trajectory requires full details of time, positions and velocities. It would be
possible to elaborate other cases to handle incomplete data by setting default values or
behavior. Different trajectory data and profile could be added for simple motion to a point or
for directly feeding incremental moves to the controller. The mpExRcsIncrementMove also
supports Cartesian coordinate system which might facilitate data input.

The state server currently only broadcasts the joint feedback, this could also be elaborated
on. As more options gets developed, simply broadcasting all the information might generate
excessive traffic, so it would be desirable that the client be able to send request for the
desired state, either subscribing to a broadcast or request a single reply message with a
specific information.

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 26

4 Appendix

4.1 Port Numbers

The MotoPlus applications need to use a specific range of the ports on the controller. To
avoid conflict between various MotoPlus application the ports 50240 to 50243 have been
reserved for the MotoRos application.

TCP_PORT_MOTION 50240

TCP_PORT_STATE 50241

Ports 50242 and 50243 are not currently used but are reserve for future development.

4.2 IO Feedback

Controller universal output group 112 is being used by the MotoRos application to
handshake with the controller job and to indicate the state of the MotoRos application.

IO_FEEDBACK_WAITING_MP_INCMOVE 11120 //output# 889

IO_FEEDBACK_MP_INCMOVE_DONE 11121 //output# 890

IO_FEEDBACK_MP_INITIALIZATION_DONE 11122 //output# 891

IO_FEEDBACK_CONNECTSERVERRUNNING 11123 //output# 892

IO_FEEDBACK_MOTIONSERVERCONNECTED 11124 //output# 893

IO_FEEDBACK_STATESERVERCONNECTED 11125 //output# 894
IO_FEEDBACK_FAILURE 11127 //output# 896

The output #889 signals that the controller is ready to receive motion from ROS and should
be set by the controller job.

The output #890 signals that ROS is done with moving the robot and the job execution can
be resumed. The MotoRos turns on this output when the command STOP_TRAJ_MODE is
received. The controller job normally turns it OFF before the next handshake.

The output #891 to #896 are set by MotoRos and should not be changed by the controller
job (or operator). The output #891 confirms that the initialization was completed. The output
#892 indicates that the server threads are running properly. Output #893 and #894 will only
turn on when at least one client is connected and should turn off is all the clients disconnect.
If output #896 is ON, a failure occurred and the controller will have to be rebooted in order to
reset the MotoRos application.

4.3 Result Codes
 ROS_RESULT_SUCCESS = 0,

 ROS_RESULT_TRUE = 0,

 ROS_RESULT_BUSY = 1,

 ROS_RESULT_FAILURE = 2,

 ROS_RESULT_FALSE = 2,

 ROS_RESULT_INVALID = 3,

 ROS_RESULT_ALARM = 4,

 ROS_RESULT_NOT_READY = 5,

 ROS_RESULT_MP_FAILURE = 6

MotoPlus-ROS Incremental Motion Interface – EDS ver.1.2.0

 27

4.4 Result subcodes
 ROS_RESULT_INVALID_UNSPECIFIED = 3000,

 ROS_RESULT_INVALID_MSGSIZE= 3001,

 ROS_RESULT_INVALID_MSGHEADER = 3002,

 ROS_RESULT_INVALID_MSGTYPE = 3003,

 ROS_RESULT_INVALID_GROUPNO = 3004,

 ROS_RESULT_INVALID_SEQUENCE = 3005,

 ROS_RESULT_INVALID_COMMAND = 3006,

 ROS_RESULT_INVALID_DATA = 3010,

 ROS_RESULT_INVALID_DATA_START_POS = 3011,

 ROS_RESULT_INVALID_DATA_POSITION = 3012,

 ROS_RESULT_INVALID_DATA_SPEED = 3013,

 ROS_RESULT_INVALID_DATA_ACCEL = 3014,

 ROS_RESULT_INVALID_DATA_INSUFFICIENT = 3015

 ROS_RESULT_NOT_READY_UNSPECIFIED = 5000,

 ROS_RESULT_NOT_READY_ALARM = 5001,

 ROS_RESULT_NOT_READY_ERROR = 5002,

 ROS_RESULT_NOT_READY_ESTOP = 5003,

 ROS_RESULT_NOT_READY_NOT_PLAY = 5004,

 ROS_RESULT_NOT_READY_NOT_REMOTE = 5005,

 ROS_RESULT_NOT_READY_SERVO_OFF = 5006,

 ROS_RESULT_NOT_READY_HOLD = 5007,

 ROS_RESULT_NOT_READY_NOT_STARTED = 5008,

 ROS_RESULT_NOT_READY_WAITING_ROS = 5009

4.5 Reply Codes

Replies used for I/O Read and Write messages

 ROS_REPLY_INVALID = 0,
 ROS_REPLY_SUCCESS = 1,
 ROS_REPLY_FAILURE = 2,

4.6 DX100 adaptation

For the DX100 version, the mpExRcsIncrementMove is replaced by the function
mpMeiIncrementMove. The mpMeiIncrementMove API requires that the controller Job
executes a SKILLSND instruction before the WAIT instruction. So, the instructions
SKILLSND “ROS-START” and SKILLSND “ROS-STOP” need to be added before and after
the WAIT OT#(890)=ON instruction in the RIS_INIT job. An extra task and related variables
are added for the DX100 version to listen for the SKILLSND instruction.

