STALKERBOT: Learning to Navigate Dynamic Human Environments
by Following People

Liz Murphy and Peter Corke
CyPhy Lab, Queensland University of Technology, Australia

firstname.lastname@qut.edu.au

Abstract

Service robots that operate in human environ-
ments will accomplish tasks most efficiently and
least disruptively if they have the capability
to mimic and understand the motion patterns
of the people in their workspace. This work
demonstrates how a robot can create a human-
centric navigational map online, and that this
map reflects changes in the environment that
trigger altered motion patterns of people. An
RGBD sensor mounted on the robot is used to
detect and track people moving through the en-
vironment. The trajectories are clustered on-
line and organised into a tree-like probabilis-
tic data structure which can be used to detect
anomalous trajectories. A costmap is reverse-
engineered from the clustered trajectories that
can then inform the robot’s onboard planning
process. Results show that the resultant paths
taken by the robot mimic expected human be-
haviour and can allow the robot to respond to
altered human motion behaviours in the envi-
ronment.

1 INTRODUCTION

A robot navigating in an environment densely populated
by people can benefit from an awareness of human be-
haviour that is not easily gleaned from standard sensors.
It is easy to envisage situations in which people learn by
observing those around them and alter their behaviour
accordingly; if something is spilt on the floor, the crowd
will divert around it, or if the flow of human traffic is
down the left hand side of a corridor it would be a foolish
person who chooses a path down the right. Incorporat-
ing this sort of information into navigational maps used
by robots is near impossible when relying on sensors like
vision and laser alone; instead what is most often used is
an occupancy grid representation where all open space is
viewed as equally good. In this paper we propose an on-

line method of creating human-centric navigational maps
by following people through the environment.

The problem of interaction between humans and
robots in cluttered environs is well studied [Thrun et al.,
1997] [Burgard et al., 1999] [Nourbakhsh et al., 2003]
and the ability of mobile robots to navigate and localize
in areas populated by humans is a mature capability. In
recent times, the focus has shifted to equipping robots
with ‘socially acceptable’ behaviours [Bennewitz et al.,
2005 [Ziebart et al., 2009] [Miiller et al., 2010] [Tipaldi
and Arras, 2011] so as to impinge less on the human en-
vironment. Both humans and robots can benefit from
a robot’s increased awareness of human behaviours; the
prospect of a near-collision with a robot is a startling
experience for a human — the incidence of which we’d
like to reduce, and for the robot it is suboptimal as it
usually requires recovery behaviours and diversions from
its planned path. However, learning about the environ-
ment from humans presents a complex challenge — hu-
man behaviour is highly dynamic, the representation of
trajectories through an area potentially involves large
amounts of data, and any solution needs to be flexible
enough to incorporate both deviations in individuals’ be-
haviours as well adapt to temporal changes of average
behaviours. In this work we equip a robot with the tools
to take human-like paths, and to adapt to changes in
human behaviour online. The robot builds up a rep-
resentation of human trajectories online by detecting,
tracking and physically following people through the en-
vironment. It can then use this information to generate a
navigational map, which can then be used by a standard
planning algorithm (such as A*) to quickly plan paths
online. What differentiates our approach most from ex-
isting approaches is the online learning aspect, as well as
the trajectory gathering using a moving platform.

This paper makes 3 key contributions to the problem
of learning human preferred paths through the environ-
ment. The first is a People Tracker ROS package that
leverages the OpenNI [Ope, 2011] library’s open source
Skeleton Tracker to allow a mobile base to safely and per-



Figure 1: The experimental platform, a Mobile Robots
Guiabot with Kinect sensor mounted on top of the touch
screen

sistently follow a person at normal walking pace. The
second is an online clustering technique that builds a
skeletal representation of the trajectories taken by people
through an area. Its probabilistic foundation means that
it requires limited tuning, and can incorporate individu-
als different walking speeds easily. The final contribution
is a map creation tool that takes the trajectory clusters
and builds a navigational map that is heavily biased to-
wards locations that people walk on in an environment.
Coupled with the clusterer, we have a fast online map
generation process that can quickly adapt to changed be-
haviours of people in the environment. Both the cluster-
ing and map creation processes have been implemented
under ROS and the code is available from our lab’s ROS
repository at http://www.ros.org/wiki/cyphy.

2 Related Work

The process of detecting and tracking humans has re-
ceived much attention in both the robotics and computer
vision literature. It has been done using a variety of sen-
sors such as LADAR [Arras et al., 2007) [Mozos et al.,
2010] [Navarro-Serment et al., 2010], vision [Siebel and
Maybank, 2006] [Schlegel et al., 1998], and more recently
using RGBD sensors such as the Microsoft Kinect or
PrimeSense PrimeSensor [Shotton et al., 2011] [Spinello
and Arras, 2011]. Tracking methods include Kalman fil-
ters [Azarbayejani and Pentland, 1996, multi-hypothesis
tracking (MHT) [Luber et al., 2009] and joint proba-

bilistic data association filters (JPDAF) [Schulz et al.,
2003], which rely on using blob detection to determine
the human torso in images or laser scans, or by detect-
ing and tracking legs. More recently, skeleton tracking
has been implemented on the Kinect using a machine
learning algorithm trained on hundreds of thousands of
human poses [Shotton et al., 2011] which tracks the 3D
positions of human joints from frame-to-frame using a
depth image sequence.

In this work we utilize the OpenNI framework, a set
of open source APIs which constitute a combined per-
son detector and tracker compatible with the Microsoft
Kinect [Ope, 2011].

People following for mobile robots has been imple-
mented in various ways. In [Kirby et al., 2007] two
methods of following people were compared: direction
following: where the robot drives directly towards the
person’s location; and path following where the robot at-
tempts to replicate exactly the path taken by the person.
Qualitative survey results found that human subjects in
the experiment found direction following to be a more
human-like behaviour. Direction following is a form of
pure pursuit tracking [Coulter, 1992], and was also im-
plemented in [Hemachandra et al., 2011] to follow a tour
guide in an office environment.

A number of previous approaches to creating naviga-
tional maps from people tracking exist in the literature.
In [Bennewitz et al., 2005] a collection of trajectories
is learned by observing motion patterns between places
that people stop for long periods of time. These tra-
jectories clustered into motion patterns using an expec-
tation maximization technique. Hidden Markov Models
derived from these learned patterns are used to main-
tain a belief over the location of people. In [Ziebart et
al., 2009], maximum entropy inverse optimal control uses
the goal-directed behaviour of pedestrians to learn a cost
function that best explains their previous trajectories.
Because the cost function maps features computed from
the environment to cost, it exhibits resilience to chang-
ing configurations of obstacles in the environment. In
[Tipaldi and Arras, 2011] a spatial affordance map uses
a non-homogenous spatial Poisson process to represent
human activity and uses this to plan paths in time and
space that maximize the likelihood of encountering peo-
ple. A navigational map is built in [O’Callaghan et al.,
2011] using Gaussian Processes to learn a function that
describes how peoples’ motion deviates from a shortest
path prior. Distinct from these approaches, where tra-
jectories are learned using fixed cameras or laser range
finders or simulation; our approach seeks to identify tra-
jectories on board the robot.

A critical part of this work is the notion of clustering
similar trajectories together in order to make the map
creation process computationally tractable. An experi-



mental evaluation of similarity measures and clustering
methodologies used in the computer vision community
is provided in [Morris and Trivedi, 2009]. In this work
we build on the work of [Piciarelli and Foresti, 2006],
chosen primarily because it employs a distance measure
that allows existing clusters to be compared with incom-
plete trajectories, as is the case when the robot begins
to follow a person.

3 Method

Creating a navigational map is broken up into 3 sub-
tasks; people following, trajectory clustering and map
creation.

3.1 People Following

The first step is to obtain a set of trajectories by detect-
ing people walking through the environment and then
following them to obtain a trajectory. To detect and
track people, we use the API provided by OpenNI [Ope,
2011] to interface to the User Generator middleware that
generates a representation of a body in the 3D scene.
This allows us to pick out the location of a given user’s
torso on a frame-to-frame basis. Although early versions
of the OpenNI skeleton tracker required users to ‘surren-
der’ to the kinect in order for tracking to begin, recent
versions allow the saving and loading of user calibration
files. We have found loading a configuration file for a sin-
gle user at the start of operation to (anecdotally) work
well in detecting other people in the environment.

We then use a pure pursuit approach [Coulter, 1992
to follow the person. It operates by calculating an error
term

e=(e* =22+ (y —y)? —d" (1)
which is the difference between the desired following dis-
tance d* and the current distance of the robot from the
person at offset (x,y) in the robot frame.

From this, we use a basic Proportional-Integral con-
troller with gain terms K;, K. to set the robot’s desired
forward velocity

v' = Kye+ Ki/edt (2)

The bearing of the person relative to the robot is

0" = tan—? L —Y (3)
r* —x
and the difference between that and the robot’s current
heading 6 is used to set the angular velocity

a=Ky(0"©0) (4)

with a proportional controller gain K > 0 and where ©
denotes the smallest difference on S. Given the limita-
tions of the Kinect sensor, which has a tracking range of

0.8-3.5 metres and a horizontal angular field of view of
view of 57° [Pri, 2011], we chose a set point of 1.5 metres
behind the person being tracked. The gain K} on the
angular correction term is set to 2.0 — relatively high
compared to K, and K; which are 1.0 — as the relatively
narrow horizontal field of view of the Kinect means the
robot needs to be able to turn quickly to keep the person
in the frame and maintain tracking. We capped forward
velocity at 1.2 ms~! and angular velocity at 0.8 rad s™*
for safety reasons, and implemented the people follower
as a ROS package.

3.2 Trajectory Clustering

The trajectory clustering algorithm is based on [Picia-
relli and Foresti, 2006], but modified to deal with the
trajectories being sourced from a mobile platform rather
than from fixed downward-looking overhead cameras as
in the original paper. We recap the basis of the algorithm
here.

Central to the algorithm is the notion of raw trajecto-
ries, which embody the instantaneous locations (t;,t;)
of the person being followed at time ¢, and clusters which
aggregate together similar trajectories in a probabilistic
representation (c,c),cl,) at time j.

The algorithm has two parts: tree building and a tree
maintenance phase. The former is depicted as a state
machine in Figure 2.

e A New Trajectory is considered to appear on start
up, or when a significant discontinuity appears in
the input to the clusterer (we assume trajectories
are continuous in space, and not necessarily time,
and that the robot will move to find a new person
to follow after following a person to the endpoint of
a previous trajectory). We allow a new trajectory
T to reach a minimum size [, and then compare
it to existing branches C' in the cluster tree using a
distance measure

n
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and dist(t;, ¢;) is the Euclidean distance from point
t; on the trajectory to a point c¢; on the cluster. Pi-
ciarelli [Piciarelli and Foresti, 2006] used a sliding
temporal window to allow the most recent point in
the trajectory to be fitted to the closest point in the
cluster given that walking speeds vary between peo-
ple. Due to the cluster pruning process we employ



here, we found there was negligible computational
penalty incurred by continually finding the closest
point on the cluster instead — and that this proved
more robust. If the distance between the new tra-
jectory and the closest existing cluster is found to
be less than some threshold level Dtcry,esn then we
begin updating the matching cluster. Otherwise, we
start creating a new cluster.

In the Creating state, points from the person’s
trajectory are continually added to a new, tempo-
rary cluster. The distance between the last point
added to the cluster and the penultimate point is
continually monitored, and if it exceeds a threshold
level Steprpresn We assume a new trajectory has
begun. New clusters are thus added to the cluster
tree in a delayed fashion. Once we have a com-
plete trajectory we prune it using a Mahalanobis
distance between the current point under evalua-
tion and the last point added to the cluster, and a
Chi-Squared threshold test that ensures new points
are only added to the cluster if there is a less than
90% chance they were derived from a distribution
of variance o2 centred on the last point added.

.o )
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where (di,d.) is the difference between point i on
the trajectory currently under evaluation and the
last point added to the newly-formed cluster. The
pruned trajectory is then added to the cluster tree,

and all variances are initialized to a set value o2.

While Updating an existing cluster the incoming
trajectory is used to update, in a weighted average,
the closest point é = (&, ¢,) on the existing cluster

ér = (1 —a)é, + at?
¢y =(1—a)ey +at], (8)
(1 — a)éye + a(dist(t;, ¢))?
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The parameter o € [0, 1] allows the rate at which
clusters fit to newly detected data to be moderated.
The trajectory-cluster distance of Equation 5 is con-
tinually monitored. If it exceeds a threshold level
Driftipresn, or the end of the trajectory is reached,
we clear the trajectory and move to the Splitting
state.

In Splitting we check to see if there are any child
nodes of the previously-matched cluster. If not, we
immediately create a new child cluster and transi-
tion to the Creating state. Otherwise, we delay
comparing the offshoot of the newly split trajec-
tory with existing child nodes until the new trajec-

D(tr,,t,;) > StePryresy New Trajectory D(tr;,tr,,;) > StePpresn

Matches existing
branch No match

Updating )

Drift < Drift,
Drift > Driftymea Thresh

Matches existing

child branch No match

Figure 2: Tree building state machine

DtCThresh 10.0

StepThresh 1.0
DriftThresh 5.0

o 0.3

Table 1: Threshold values used in trajectory clustering

tory reaches size ¢, At this point the trajectory-
cluster distance of Equation 5 is again employed and
the closest matching child cluster less than thresh-
old Dtcrpyresn is selected for Updating. If no child
clusters are matched, a new child cluster is created
and we enter the Creating state.

While tree building operates on a frame-by-frame ba-
sis, tree maintenance occurs only periodically. It involves
3 operations:

e Merging traverses levels of the tree and uses a
cluster-cluster variant of Equation 5 to compare the
distance between sibling clusters. Should it be less
than a threshold dg;p, then a weighted average of
the two clusters ¢; and cs is taken

merged . merged

[Cx 7Cy } = /J“[Cafla Cyl] + V[C:C27 Cy2}
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Any child nodes of the merged clusters are repar-
ented to the new merged cluster.

e Concatenation joins clusters together in the case
where a parent node has only one child cluster.

e Pruning gives us the option to remove clusters

from the tree that have not been recently updated.

The clustering algorithm has been implemented in C++

under ROS. Threshold values used in the generation of
the results for this paper are given in Table 1.

3.3 Map Creation

The map creation process is akin to an inverse Occu-
pancy Grid building process, and is outlined in Algo-
rithm 1. It is a fast, online technique. Each time



a new cluster tree arrives the existing map is cleared.
Each node of a cluster ¢” is a 2D probability distribu-
tion N ([c}, cy.]; clt2) describing the likelihood of people
traversing the location centered at [cy,>cy.]- Clusters
that represent popular trajectories will exhibit low vari-
ance in the nodes.

We want the people-centric costmap to place low costs
on areas of the map commonly traversed, and high costs
elsewhere. Our observations of people correspond to ar-
eas in which we want low cost. This is diametrically
opposite to the standard occupancy grid mapping prob-
lem where observations (eg laser returns) are indicative
of high cost regions, and it is the unobserved areas along
the line-of-sight to the obstacle that have their costs
(proportional to likelihood of occupancy) reduced. Es-
sentially, what algorithm 1 implements is half of the oc-
cupancy grid mapping process that results in areas in
which our observations fall having their costs reduced.
We generate observations by drawing n samples from
each cluster node distribution. The map creation pro-
cess is also implemented in C++ as a ROS process.

Algorithm 1 People Map Creation
for all clusters ¢ do
for all nodes in cluster n do
Generate k samples from N (jip, o)
for all s=1 to k do
(Ik-, yk) %QUANTIZE(S% Sy)
Map[xka yk] — Ma’p[xka yk] + My free — Mio
end for
end for
end for

4 Experiments and Results

Experiments were carried out using a MobileRobots
GuiaBot shown in Figure 1. A set of 16 different tra-
jectories were gathered, this raw data is overlaid on a
floor plan of the experimental area in Figure 3. All
trajectories emanate from roughly the same point, an
area of 2 metres diameter at the exit to the lift shaft.
They are uni-directional, radiating away from this point
to 6 different locations on the floor. Figure 4 shows how
the costmap and clusters are incrementally built up with
the arrival of new trajectories. Although this is a small
dataset, our final map in Figure 4(h) already shows sig-
nificant areas corresponding to high foot-traffic. Also
notable is that the raw dataset comprises 5929 location
points, but the final set of 9 clusters has a total of 261
points. It is this skeletal representation of the trajectory
data that means costmap creation can be done on-the-
fly.

Figure 5 compares the results of planning paths from
the lift exit to 3 different locations on the floor using
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Figure 3: The raw trajectories taken by people

(a) our people-centric map, shown in green, and (b) the
default navigation stack in ROS that makes use of Occu-
pancy Grids and inflated obstacles, shown in red. There
are notable differences in the paths, our costmap has
successfully captured the common ‘channels’ that peo-
ple walk in on the floor, and this reflected in the plans.

5 Conclusions and Future Work

There are a number of obvious ways in which the work
presented here could be extended. The small dataset
shows that this is a viable method, but more data needs
to be gathered to test the robustness of the algorithm
and to converge on suitable threshold parameters as de-
scribed in section 3.2. The variance (02) associated with
the clusters is presently 1-dimensional, meaning that the
associated pose distributions are circular. This is not
necessarily realistic as there is likely to be more variance
in the direction of forward motion along the trajectory
— as the individual nodes embody a temporal averag-
ing of people’s walking speeds — rather than laterally.
It is assumed the position of the trajectories is known
in the global frame with some certainty, however this is
an abstraction of the truth as the person’s pose is cal-
culated from the robot’s position derived from running
adaptive Monte Carlo localization (AMCL) under ROS.
This means that pose uncertainty data is easily avail-
able and could be integrated into trajectory pruning and
matching. To date, only one-way trajectories emanating
from a single location have been clustered. Another ob-
vious extension is to build a forest of trajectory clusters
with individual trees rooted at common entry points in
the environment such as doorways, staircases and lifts.
Currently, trajectories that double back on themselves
pose problems for the clustering technique, so a method
of detecting when a person is turning around, creating
a new trajectory and matching it amongst branches of
the forest will need to be developed. The tree structure



(c) Cluster, After 2 trajectories. NB the red tra-
jectory of the previous image has split in two.

(e) Clusters, after 6 trajectories (f) Map, after 6 trajectories. NB, the well trodden
section emerging from the lifts is already notice-
ably lower cost than the rest of the map.

(g) Clusters, after 16 trajectories. The final cluster (h) Map, after 16 trajectories. This is our final people-

tree has 9 nodes, the end result of various creation, centric costmap, shown without the underlying floor-
splitting, merging and concatenation operations. plan. Black indicates high cost, white is low cost.

Each cluster is plotted in a different colour here.

Figure 4: The evolution of the cluster tree (with the mean of individual cluster points plotted as coloured dots,
each cluster has a different colour associated with it), shown together with the evolution of the costmap after the
addition of the stated number of trajectories. The underlying geometry of the floor is shown in black shadow, and
the costmap itself is high cost everywhere except where you see the gaussian blur emerging. Lighter colours indicate
lower cost. Although this is a small dataset, even after only 16 trajectories well-trodden paths are easily visible in

the costmap.



End Point 3

Right office
(End Point 2)

" Corridor Ri.ght
(End Point 1)

Lifts
(Start Point)

Figure 5: Planning paths over the people centric costmap (green paths) compared with the red paths generated by
planning over the default Costmap2D maps which the ROS navigation stack creates from a map created by gmapping.
Note that because people tend to take the same paths from the lift, the green paths are co-located as they emerge
from the lift shaft in the bottom right of the figure. The people centric path also tracks closer to the wall on the
path to the right office - reflecting the fact that more tracks in our dataset were destined for the right office than the
left and that people begin to plan their paths early. The path to corridor right is also located in the center of the
corridor when using the people-centric map. The standard costmap cuts the first corner, takes an extended diagonal
track and hugs the left-hand wall of the corridor a lot more than people do.

produced by the trajectory clustering algorithm could
be used in collision detection, as it gives a prior on the
likely future path of pedestrians at critical points in the
environment. Finally, the costmap produced in the map
creation process could be used to implement a sensory
filter for localization algorithms like AMCL to increase
robustness around people; as the map highlights areas
where dynamic obstacles are common.
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