
Navigation in Hybrid Metric–Topological Maps

Kurt Konolige, Eitan Marder-Eppstein, Bhaskara Marthi
Willow Garage, Inc.

Abstract— We present an approach for navigation in hybrid
maps consisting of a topological graph overlaid with local
occupancy grids. The topological graph is built on top of a
graph SLAM system, which can be efficiently optimized even
for very large environments. The novel feature of our system
is that it navigates locally using local metric maps, while the
overall plan is formed on the topological graph. Unlike many
current SLAM methods, we never reconstruct a full occupancy
grid of the environment for localization or path planning. We
show that our method generates near-optimal plans, and deals
gracefully with changes to the map.

I. INTRODUCTION

Most current SLAM systems generate global, metric maps
of the workspace. While convenient for small areas, global
metric maps have inefficiencies of scale: for example, plan-
ning in a large metric map quickly grows unwieldy. There
is also a problem of maintaining global consistency when
closing large loops, which in the worst case grows cubically
in the size of the map for both EKF and constraint-based
maps. Finally, representing multilevel structures such as
parking garages leads to even larger representations, as full
3D space must be taken into account, rather than the typical
2D roadmap.

Many researchers have noted that, for the purposes of
navigation, a globally consistent metric map is not a neces-
sity. Rather, over larger spaces, topological connections with
rough metric information suffice for planning, while local
metric information can be used for more precise localiza-
tion and obstacle avoidance. This insight has led to many
algorithms for SLAM mapping systems that use submaps to
control the computational and consistency issues of scaling.
Surprisingly, there has been very little work done on a major
reason for mapping: navigation. In this paper, we address the
problem of designing a practical navigation system for hybrid
maps that exhibits good scaling properties, while maintaining
an overall quality of path planning similar to global metric
maps.

Our navigational system assumes a SLAM framework
based on a set of 2D robot poses and constraints between
them (a pose graph [1], [2]. This graph naturally forms a
2D manifold [3], which can represent 3D structures such as
parking garages. Optimization of the global pose graph can
be done very efficiently with recent methods [4]; however,
reconstructing the global occupancy grid is a bottleneck.
Instead, we only form occupancy grids in overlapping neigh-
borhoods of limited size, using sensor readings stored at the
pose nodes. The local grids are used for localization, map
update, and local navigation (see Figure 1).

Fig. 1. The robot using the hybrid metric-topological navigation system.
Red circles are nodes of SLAM and nav graphs; blue lines are SLAM
constraints, purple ones are nav links. Green squares show the location of
local occupancy grids. The robot is navigating in the grid using a local
metric planner.

The main contribution of this paper is in the design and use
of the local grid structures for localization and navigation,
and the creation of a topological map and planner from the
pose graph structure. The topological map is related to the
pose graph, but imposes additional requirements.

• The nav graph is consistent, that is, two nodes are
connected if and only if there exists a valid (metric)
path between them.

• Nav graph planning is efficient, that is, the executed
paths are as short as those from the global metric map.

The efficiency of the navigational planner comes from the
use of local metric maps in the executing navigational plans
on the topological graph.

The topological navigational system gives rise to some
pleasing properties. Planning can be done much faster on the
nav graph than on a full metric map. Since only neighbor-
hood metric information is needed, occupancy grids can be
constructed in an incremental manner for small areas, and
redone when sensors indicate changes in the environment.
This paves the way for real-time updating and replanning on
the graph, and we show some preliminary results.

In the rest of the paper, we present our navigational algo-



rithm. In Section II related work is presented and compared.
In Section III, we describe the SLAM graph, and then the
construction of the navigational graph on top of it. The
subsequent section details planning and execution on the nav
graph, followed by experiments and the conclusion.

II. RELATED WORK

Our work is in the tradition of a long line of research that
combines metric and topological information in creating and
navigating in large-scale maps. We can distinguish several
broad themes. First, SLAM research in large-scale mapping
often invokes hierarchies of submaps with constraints be-
tween them. Second, topological approaches are primarily
concerned with behavioral navigation between “important
perceptual places.” Third, and closest to the present work, are
hybrid approaches that use local metric information, while
maintaining a graph structure at a more abstract level for
efficiency.

In large-scale SLAM, a popular representation is to use
submaps that are metrically consistent, and connect them
with metric constraints [5], [6], [7], [8], [9]. Typically these
methods use local reference frames for each submap; the
robot is localized within the local coordinate system, and gets
re-localized when switching submaps. Our system borrows
from this idea: our submaps consist of locally-constructed
occupancy grids for navigation and localization. However, we
differ in that the pose graph is a global structure, which can
be updated efficiently with recent sparse nonlinear methods
[4].

Topological mapping constructs maps that navigate be-
tween places that can be recognized perceptually, as in
Kuiper’s classic work on the Spatial Semantic Hierarchy
[10]. Typically the navigation is done by behavioral methods
using simple perceptual clues such as wall-following [11],
[12], [13] or, more recently, geometric image matching [14].
We also maintain a topological network among places, but
these places are not perceptually significant – they are just
places from which the robot takes a laser scan. Navigation
and localization use scan-matching techniques from SLAM,
rather than behavioral schemas.

The closest parallel to our work are hybrid systems that
use local metric maps for localization and planning [15],
[16]. In Thrun’s work [15], the major emphasis is on making
planning efficient by abstracting a topological map from
an underlying metric map. Thus, he first builds a global
occupancy map, and then forms a roadmap network for
planning, using Voronoi diagrams. He shows that planning on
the topological map leads to path lengths only a few percent
greater than the grid-based paths. In our work, in contrast,
the global grid map is never constructed: the nav graph is
created from the SLAM pose graph nodes. Also, while the
global plan is graph-based, local optimization is carried out
in each submap, leading to the same path lengths as with the
global grid.

Zivkovic et al. [16] present a similar system, but based on
a graph-cut clustering model rather than Voronoi diagrams.

Their results show higher computation times and path lengths
compared to [15].

III. MAP REPRESENTATION

A. The pose graph

Our navigation system assumes input from a graph SLAM
algorithm that generates a hybrid metric-topological map.
The underlying map representation is a pose graph, defined
to as G = {N,E, S,C, P}, where:

• N is a set of nodes. The nodes are referred to using
unique ids that are stable over time, i.e., a given id
always refers to one particular pose in the world.

• For each node n, Sn is the associated sensor data, stored
in the coordinate frame of that node’s pose. For the
experiments, we use 2D scans from a laser range finder.

• E is a set of edges, representing soft constraints between
node poses.

• For each edge e, Ce is the associated constraint, in
the form (µ,Σ−1), representing a Gaussian over the
transformation between the two frames.

• P consists of the globally optimized pose pn of each
node.

We also assume the robot is localized in this graph.
The localization is of the form (n, p), where n ∈ N , and
p ∈ SE(2) is a pose in the frame at n. Thus, unlike typical
SLAM systems, we do not make use of a global pose.

Although it is not the focus of this paper, we now describe
the specific topological SLAM algorithm that we use (see
[17]. The algorithm maintains a pose graph and a localization
with respect to it. The localization is updated using scan
matching: given a previous localization, a relative pose based
on wheel odometry, and a new laser scan, we scan match
against the local neighborhood in the graph, find a new best
pose, and then update the reference node to be the one closest
to the new pose. Whenever the localization (n, p) is such that
‖p‖ is greater than some threshold, we add a new node to
the graph.

In our system, there are three kinds of constraints that may
be added when a new node is generated (the optimization
procedure is, of course, independent of the particular type of
constraints used, and other sources such as GPS and visual
odometry could be incorporated straightforwardly):

• A wheel odometry constraint linking this node to the
previous one.

• Scan-matching constraints linking this node to the set
of nearby nodes to the reference node, with respect to
graph distance.

• Loop-closure constraints, based on a multiresolution
scan match, linking this node to others that are not
close in the graph but have optimized poses that are
close (where the distance is between barycenters of the
corresponding laser scans) in metric distance.

All scan matching is done using the open-source matcher
that is included with the Karto SLAM package [18]. We run
a graph optimization procedure (sparse pose adjustment [4])
periodically on the constraint graph; for even very large



Fig. 2. Visualization of the pose graph generated by our graph SLAM
algorithm on a simulated environment. The circles represent nodes in the
graph, with edges representing constraints between them. The ground truth
position of the robot is indicated by the pentagon, and the arrow to it
represents the localization.

graphs, it typically takes only 10s of millseconds, and we run
it once a second. Figure 2 shows the pose graph generated
online by the SLAM system during a simulated run, and a
corresponding localization of the robot.

B. The navigation graph

The pose graph represents constraints on relative node
poses but does not directly represent navigability. Our first
contribution is to overlay a navigation graph over the pose
graph. A navigation graph is defined to be of the form
R = {G, O,E,C, S} where:

• G is a pose graph.
• O is a set of local occupancy grids. Each local grid is

attached rigidly to some central node.
• For each grid o, Co ⊂ N is the set of contained nodes

of o. The relative optimized poses of nodes in Co in the
grid’s frame must actually lie within the bounds of the
grid.

• For each grid o, So ⊂ N is the set of overlaying nodes
of o. o is computed by combining the sensor data of
the corresponding nodes (using the relative optimized
poses to register them).

• E is a set of edges. Each edge is of the form
(n1, n2, o, c) where n1 and n2 are nodes, o is a grid
containing both of them, and c is a numerical cost.

In our construction procedure, So consists of the contained
nodes Co, as well as other nodes whose scan barycenters lie
within o (this is to minimize the unobserved portion of the

Fig. 3. Visualization of nav graph generated online while running in the
same simulated environment as in Figure 2. The left image shows the pose
graph for the relevant section of the environment. The right image shows the
navigation graph where purple links represent edges. Notice that navigation
graph edges represent connectivity information in the grid, while pose graph
edges represent SLAM constraints, resulting in different graph structures.

grid in the case where all poses in the grid are facing the
same way). The grid is computed by a standard ray tracing
procedure [19]. For a given cell, let m be the number of rays
passing through it, and n be the number of rays terminating
at it. The cell is marked free iff m > 2 and n/m < 0.1. The
grid size is a parameter to the algorithm, and we evaluate the
performance at various grid sizes in Section VI. A square
grid of side r is defined to cover a node if the node is
contained within a square with side αr with the same center
(we use α = 0.6). The construction algorithm maintains the
invariant that every node is covered by at least one grid by
adding new grids when there exist uncovered nodes.

Each edge of the navigation graph is associated with one
of the occupancy grids. An edge represents that it is possible
to navigate from the source to the destination pose on the
corresponding grid. The edge is given a weight equal to
the cost of this path (we just use path length). Note that
navigability, and therefore the structure of the navigation
graph, depends on the shape of the particular robot.

Our construction procedure uses A* search within the grid
(with obstacles inflated by the radius of the robot) to compute
edges between each pair of nodes within a certain distance
threshold of each other. Figure 3 shows the navigation graph
generated during a simulated run.

The occupancy grids will be used for navigation, as
described in Section IV. To make this work, we publish the
local grid whose center is closest to the robot’s pose. We
also publish the robot’s pose in that grid’s coordinate frame
(this is inferred by transforming the node-relative localization
estimate received from SLAM).

IV. NAVIGATION PLANNING AND EXECUTION

Navigation consists of forming a plan to get from point A
to point B in the map, and then following it while avoiding
unmapped obstacles. The basic form of a plan in our hybrid
maps is:

• Select a start node near the robot, and plan a metric
path to it.

• Select a goal node near the goal, and plan a metric path
to it.

• Plan a topological path between the start and goal nodes.



A. Selecting Start and Goal Nodes

To project the robot’s position onto the navigation graph,
we require a local grid that contains the robot. We choose
a grid whose center point has the minimum distance to the
current position of the robot. Note that this search is carried
out using the manifold distances along the pose graph.

Once a grid is selected, we find the closest navigation
graph node to the robot by computing the configuration
space for the grid assuming a circular robot, and planning
metrically from the robot to each navigation graph node
in the grid. The metric plan is efficiently formulated by
computing a navigation function for the grid using Dijkstra’s
algorithm: each point in the grid has a potential associated
with it that represents its distance to the robot as well as to
associated obstacles. We then look up the potential for each
navigation graph node contained in the grid and pick the one
with the lowest potential as the starting node for planning in
the navigation graph structure.

To select the goal node on the navigation graph for
planning, we use a similar process with the desired goal pose.
We find grids that contain the goal pose, select the grid whose
midpoint is closest to the goal pose, compute configuration
space and potential for the grid, and select the navigation
graph node in the grid with the minimum potential.

B. Topological Planning

We create a plan between the start and goal nodes in
the navigation graph using Dijkstra’s algorithm. The plan
created consists of a set of waypoints for navigation to
follow. Each waypoint in the plan could be fed directly to
the metric navigation system, but this would result in metric
navigation closely following the navigation graph structure.
This is not desirable since the navigation graph only covers
some fraction of the space, and following it may lead to
paths that are far from optimal. Instead, we’d like to plan
metrically in the grid that currently contains the robot for as
long as possible.

To this end, not every waypoint in the plan produced from
the navigation graph is fed to the metric navigation system.
Instead, we choose the last waypoint on the plan contained
within the current grid for which a valid plan exists and
pass it to the metric navigation system. Each time the robot
switches grids, meaning it becomes closer to the center point
of a new grid than the grid it is on, we again find the last
waypoint in the plan contained on the grid and pass it to the
metric navigation system. In this way, we allow the metric
navigation system to be as efficient as possible for the grid
size selected. Larger grid sizes lead to closer to optimal plans,
smaller grid sizes require less memory. An example of the
metric map being used to the robot’s advantage is shown in
Figure 4.

C. Metric Navigation

For performing navigation within a local grid, we use the
ROS navigation stack [20]. The navigation stack takes in
information from the robot’s sensors, which it merges with
the static obstacle information available in the local grid. This

Fig. 4. An example of the robot creating a plan in its local metric grid
that shortcuts the global navigation graph. The topological plan is shown in
cyan while the metric plan is shown in green.

obstacle information is tracked in a three-dimensional voxel
grid structure, and is projected down into two dimensions for
path planning purposes. The navigation stack, as configured
for this work, uses an A* planning algorithm that plans in
configuration space. It then follows that plan using the Dy-
namic Window Approach [21] to forward-simulate potential
trajectories and select commands that move along the global
plan while avoiding obstacles.

D. Blocked Edges

The navigation system also needs to be robust in the
presence of dynamic obstacles. It may be that a waypoint
given to the metric navigation component of the system is
infeasible because an unmodeled obstacle blocks the robot.
In this case, the metric navigation component reports the
goal as infeasible to the topological navigation component.
From here, the topological navigation component needs to
decide what edge in the navigation graph it should consider
blocked. To do this, it requests metric navigation to make a
plan from each waypoint in the current topological plan to
its neighboring waypoint until it finds a link that the metric
planner reports as not traversable. This link is added to a list
of blocked links, and the planner is invoked to find alternate
routes.

V. UPDATES TO THE MAP

Although the purpose of this paper is to present the naviga-
tional system rather than the mapper, we briefly explain some
simple procedures that show the promise of our technique as
a basis for online map updating.

A. Incorporating pose graph updates

To ensure that our system can be run online, it is important
to be able to update the navigation graph efficiently given



changes to the pose graph. In our implementation, the pose
graph mapper broadcasts incremental changes to the pose
graph consisting of:

• New nodes
• New edges
• New scans attached to existing nodes
• Modifications to node poses

Given such a change, an exact procedure to update the
navigation graph is to reoverlay every occupancy grid for
which a node or scan has been added, or for which any
node used to overlay it has shifted. We then recompute the
shortest paths in each modified grid, and use these to add
and delete edges and update edge lengths in the navigation
graph.

In practice, such a procedure scales badly. The reason
is that local changes can ripple through the entire pose
graph during optimization, requiring overlaying and recom-
puting shortest paths on essentially every grid. Since we
are incorporating changes every few seconds, this becomes
infeasible for graphs with more than a few hundred nodes.
We therefore adopt an opportunistic strategy: only those
grids in the immediate graph neighborhood of the change
are recomputed. Other grids are re-computed on demand, as
the robot traverses into them when executing plans.

The effect of our strategy is that upon, say, a loop closure,
we may temporarily be wrong about the connectivity of some
distant portion of the environment. As we approach that area,
though, we will update that part of the graph, correcting any
out-of-date edges. An alternative would be to search from
the point of loop closure outwards, until the effects of the
closure on the relative poses of graph nodes is small. Given
the results from relative bundle adjustment [22], we suspect
that the number of affected local maps would be small.

B. Updates based on blocked paths

The map may not be static, so that the robot discovers
an obstacle that blocks the connectivity of the nav graph.
The general problem of deciding whether such an obstacle
is transient or not is a difficult one. One simple method
is to assume that all such blockages are temporary, and
will be removed at some future time. We have already
discussed how we identify blocked edges. Once a blockage
is found, the relevant edge is added to a list of blocked
links with a user-specified timeout. Each time the topological
navigation component receives a new navigation goal to
execute, it removes all edges between nodes pairs in the
blocked link list. So, when a new plan is made, blocked
links are not considered and the robot can receive a high
level plan that avoids the obstacle. Blocked links are also
removed from this list, and the appropriate edges restored
to the roadmap, whenever they’ve persisted in the for longer
than their specified timeout. This strategy is obviously sub-
optimal, and is especially bad if a blockage is permanent;
but in practice it has worked well.

Fig. 5. The navigation graph generated for the simulation environment
in which experiments were performed. The green boxes represent the local
grids stored in the graph. The grid with obstacle information displayed is
the active grid for the metric navigation system.

VI. EMPIRICAL RESULTS

To test our system we made use of both simulated and real
robots with their associated envionments. In simulation, we
compared different configurations of the system to attempt to
learn what configuration would be promising for running on
the real robot. Specifically, we performed three experiments.
The first examines how the selection of a local grid size
affects the optimality of plans in static environments. The
second looks at how grid size selection influences plans in
environments with dynamic and unexpected obstacles. The
third comapres the performance differences between plan-
ning globally with a metric planner and planning globally on
a graph structure. After performing these experiments in sim-
ulation, we re-ran them on our PR2 robot (http://www.
willowgarage.com/pages/pr2/overview) to vali-
date the results and prove the system in the real world.

A. Optimality

We first address the question of how good the plans
from our navigation system are, by comparing to a metric
planner that uses the ground truth occupancy grid of the full
environment. For the purposes of this experiment, we define
an optimal plan as that executed by the ROS navigation
stack which uses a fully metric map [20]. From a simulated
office environment, we built a navigation graph as shown
in Figure 5 configured to allow for edges between nodes
up to 3 meters apart. We then selected 20 locations on the
navigation graph as goal points for the robot and planned
to them using local grid sizes of 10, 15, and 20 meters. We



Simulation Results for Optimality
Grid Size Distance Traveled
Metric Map 723.15 meters
20 Meter Grid 721.16 meters
15 Meter Grid 713.35 meters
10 Meter Grid 715.36 meters
Exact Following of Graph 727.51 meters

TABLE I
COMPARISON OF DISTANCE TRAVELED FOR DIFFERENT LOCAL GRID

SIZES WITH DISTANCE TRAVELED WITH A METRIC SYSTEM FOR A

SIMULATED ROBOT.

Fig. 6. An example of a sparse navigation graph with dynamic obstacles.
The 10 meter grid doesn’t have enough metric information to plan around
the obstacles, the 15 meter grid has barely enough room in its map to create
a plan, and the 20 meter grid has plenty of space to plan around the obstacle.

hypothesized that as grid size increased, plans executed with
our system would become increasingly optimal at the cost of
performance. However, as shown in Table I, each grid size
compared favorably with the optimal plan over the course of
the run as they were all within 1 percent of the optimal path
length.

To explore this further, we attempted to run with a grid size
of 5 meters. This size proved to be too small to successfully
reach all of the waypoints visited, but yielded an interesting
observation. The optimality of a plan in the navigation graph
seemed more dependent on the density of the navigation
graph than the local grid size. As long as the grid size was
large enough to follow waypoints in the plan, coverage of
the space was sufficient to produce a near optimal plan. To
verify this, we also ran the experiment on a 20 meter grid
where the robot was required to follow the plan given by
the navigation graph exactly, instead of being given an exit
point from each region. Even when required to reach every
waypoint on the plan, the total distance traveled by the robot
compared favorably with the optimal path length as shown
at the bottom of Table I. This implies that the navigation
graph is dense enough in the environment tested to produce
near optimal plans regardless of grid size.

Graph vs Metric Planning
Path Distance (meters) Planning Time (seconds)
Metric Graph Metric Graph
33.95 33.69 0.12521 0.01776
24.79 25.83 0.06862 0.01649
24.78 25.52 0.07562 0.02044
25.23 24.86 0.09117 0.02060
29.97 31.80 0.08798 0.01520
17.44 17.55 0.06472 0.01693
46.64 38.12 0.14870 0.01194
35.12 37.55 0.13294 0.01323
55.53 58.61 0.14245 0.00010
65.17 67.77 0.16414 0.02216
44.42 45.11 0.13104 0.01674
18.43 19.22 0.07238 0.00012
36.38 36.52 0.09612 0.00019
50.97 49.39 0.14645 0.00016
34.12 35.25 0.06304 0.00020
40.25 39.99 0.14480 0.01475
2.89 2.94 0.03589 0.02489

TABLE II
COMPARISON OF RUNTIMES AND PATH DISTANCES FOR THE GRAPH AND

METRIC PLANNERS.

B. Graph Density vs Grid Size

Although the size of local grids had little effect on plan
optimality in our first experiment, we postulated that with a
sparse graph, or a situation where the robot was required
to move far off the navigation graph structure to match
the metric plan, grid size would still be a major factor.
To test this hypothesis, we designed an example where
the robot encountered an obstacle in a large room of our
simulated environment. As shown in Figure 6, the navigation
graph only runs down the center of the space between two
doorways. In effect, the navigation graph is extremely sparse
in this section of the environment, and the dynamic obstacle
blocking the main path through the room forces the robot off
of the graph structure. Figure 6 clearly shows that for the 10
meter grid, the obstacle will be impassible, while the 15 and
20 meter grids are large enough to allow the robot to avoid
the blockage.

This example implies that there is a direct relationship
between navigation graph node density and the size of local
grids. A dense graph reduces the size of local grids necessary
to successfully navigate in an environment, but holds a higher
maintenance cost as connectivity must be computed between
many nodes. A large local grid size makes computing the
edges in the navigation graph less computationally expensive,
but with this comes increased metric planning cost.

C. Metric vs Graph Planner Comparison

To compare the efficiency of running planning on a metric
structure versus planning on a graph, we ran an experiment
that compared runtimes of the metric planner with that of the
graph planner in an office environment. For the experiment,
we compared 17 paths of varying distance. The metric plan-
ner used a 58 meter by 45 meter grid at a resolution of 0.025
meters/cell for planning, while the graph planner operated on
a navigation graph with 374 nodes and a local grid size of 10



Real World Results for Optimality
Grid Size Distance Traveled
Metric Map 62.77 meters
10 Meter Grid 74.90 meters

TABLE III
COMPARISON OF DISTANCE TRAVELED FOR DIFFERENT LOCAL GRID

SIZES WITH DISTANCE TRAVELED WITH A METRIC SYSTEM FOR A REAL

ROBOT.

meters at a resolution of 0.025 meters/cell. As shown in Table
II, the graph planner is significantly more efficient, and the
gap between the two scales based on distance planned. This
implies that in larger environments, the disparity between the
graph and metric planners would become even greater. Table
II also shows the distances covered by the robot when using
the metric and graph planners are nearly identical across a
number of different path lengths. There is one case, however,
where the graph planner takes a significantly shorter route
than the metric planner. On this particular plan, the metric
planner chose to go the long way around an obstacle to
minimize its cost function, while the graph planner chose
to traverse through a narrow passage.

D. Real World Trials
To verify that the navigation system works in the real

world, we ran a smaller version of our first experiment on
a PR2 robot. In this experiment, the robot was tasked to
navigate to 5 waypoints in our office environment using both
the hybrid system presented in this paper and a global metric
grid approach. As shown in Table III, the robot created plans
comparable to those of the metric planner despite using a
small, 10 meter grid. During these experiments, the robot
also encountered dynamic obstacles that caused edges in the
navigation graph to be blocked, but it was able to create
plans in the roadmap around obstacles using alternate links.

VII. CONCLUSION

We have described a hybrid metric-topological naviga-
tional system that achieves a performance similar to that
from a global metric map. The hybrid system achieves its
performance by using local metric grids for enhanced local
planning, while avoiding the computation of a complete
global grid. As a consequence, the hybrid system can be
created and updated incrementally.

While we have shown some simple algorithms for map
update, there is much room for improvement. For example,
when updating the map, it would be useful to show that
relative displacements among graph nodes die out as the
graph distance from the update increases, so that only local
updates are ever necessary.

Another interesting extension would be to maintain the
local metric maps as full 3D structures. Since the area of
the each local grid is limited, it should be possible to do
the construction online, and to cache them when they are no
longer immediately needed.

The mapping and navigation system we have presented is
available as open-source software as part of the ROS system
(http://ros.org).

REFERENCES

[1] F. Lu and E. Milios, “Globally consistent range scan alignment for
environment mapping,” Autonomous Robots, vol. 4, pp. 333–349,
1997.

[2] S. Thrun and M. Montemerlo, “The GraphSLAM algorithm with
applications to large-scale mapping of urban structures,” International
Journal on Robotics Research, vol. 25, no. 5/6, pp. 403–430, 2005.

[3] A. Howard, G. Sukhatme, and M. Mataric, “Multirobot simultaneous
localization and mapping using manifold representations,” Proceedings
of the IEEE, vol. 94, no. 7, pp. 1360–1369, July 2006.

[4] K. Konolige, G. Grisetti, R. Kümmerle, B. Limketkai, and R. Vin-
cent, “Efficient sparse pose adjustment for 2d mapping,” in In IEEE
International Conference on Intelligent Robots and Systems, 2010.

[5] M. Bosse, P. Newman, J. Leonard, and S. Teller, “Simultaneous
localization and map building in large-scale cyclic environments using
the atlas framework,” International Journal of Robotics Research,
vol. 23, no. 12, 2004.

[6] C. Estrada, J. Neira, and J. Tardos, “Hierarchical slam: Real-time
accurate mapping of large environments,” IEEE Transactions on
Robotics, vol. 21, no. 4, 2005.

[7] J. Modayil, P. Beeson, and B. Kuipers, “Using the topological skeleton
for scalable global metrical map-building,” in International Conference
on Intelligent Robots and Systems, 2004.

[8] K. Ni, D. Steedly, and F. Dellaert, “Tectonic sam: exact, out-of-core,
submap-based slam,” in In Proc. IEEE International Conference on
Robotics and Automation, 2007, pp. 1678–1685.

[9] L. Paz, J. Tardós, and J. Neira, “Divide and conquer: EKF SLAM in
O(n),” IEEE Transactions on Robotics, vol. 24, no. 5, October 2008.

[10] B. Kuipers and Y.-T. Byun, “A robot exploration and mapping strategy
based on a semantic hierarchy of spatial representations,” JOURNAL
OF ROBOTICS AND AUTONOMOUS SYSTEMS, vol. 8, pp. 47–63,
1991.

[11] E. Fabrizi and A. Saffiotti, “Augmenting topology-based maps with
geometric information,” Robotics and Autonomous Systems, vol. 40,
no. 2, 2002.

[12] D. Rawlinson and R. Jarvis, “Topologically-directed navigation,”
Robotica, vol. 26, no. 2, pp. 189–203, 2008.

[13] P. Beeson, N. K. Jong, and B. Kuipers, “Towards autonomous topo-
logical place detection using the extended voronoi graph,” in In
IEEE International Conference on Robotics and Automation, 2005,
pp. 4373–4379.

[14] F. Fraundorfer, C. Engels, and D. Nistér, “Topological mapping,
localization and navigation using image collections,” in IROS, 2007,
pp. 3872–3877.

[15] S. Thrun, “Learning metric-topological maps for indoor mobile robot
navigation,” Artificial Intelligence, vol. 99, no. 1, pp. 21–71, 1998.

[16] Z. Zivkovic, B. Bakker, and B. J. A. Kröse, “Hierarchical map building
and planning based on graph partitioning,” in ICRA, 2006, pp. 803–
809.

[17] J. Gutmann and K. Konolige, “Incremental mapping of large cyclic
environments,” in Proc. IEEE International Symposium on Compu-
tational Intelligence in Robotics and Automation (CIRA), Monterey,
California, November 1999, pp. 318–325.

[18] Karto Robotics, http://www.kartorobotics.com.
[19] J. Bresenham, “Algorithm for computer control of a digital plotter,”

IBM Systems J., vol. 4, no. 1, pp. 25–30, 1965.
[20] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige,

“The office marathon: Robust navigation in an indoor office environ-
ment,” in ICRA, 2010, pp. 300–307.

[21] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robotics and Automation Magazine, vol. 4,
no. 1, pp. 23–33, 1997.

[22] G. Sibley, C. Mei, I. Reid, and P. Newman, “Vast-scale outdoor
navigation using adaptive relative bundle adjustment,” International
Journal of Robotics Research, vol. 29, no. 8, 2010.


